
Graphics Library Programming Guide 8-1

Chapter 8

8. Hidden-Surface Removal

When you look at a 3-D scene, you see only the surfaces that are nearest to the
eye, while other surfaces behind them are obscured (provided the items are
opaque). Drawing speed can be improved by drawing only the items that are
visible to the eye in the final scene. Hidden-surface removal is the process of
determining in advance which surfaces are not visible in the final scene, in
order to prevent them from being drawn. This chapter describes how to do
hidden-surface removal.

• Section 8.1, “z-buffering,” tells you how to remove hidden surfaces
by drawing only the surface closest to the eye.

• Section 8.2, “Using z-buffer Features for Special Applications,” tells you
how to use other techniques for determining visible surfaces.

• Section 8.3, “Stenciling,” tell you how to create stencils that allow you to
update drawings selectively.

• Section 8.4, “Eliminating Backfacing Polygons,” tells you how to remove
hidden surfaces by drawing only the polygons that face the viewer.

• Section 8.5, “Alpha Comparison,” tells you how to use special alpha
hardware to indicate transparency.

Two basic methods of hidden-surface removal are discussed in this chapter.
One method of determining surface visibility is to use a z-buffer to keep track
of which item is closest to the eye at each pixel. Another method is to disable
drawing for polygons that face away from the viewer. Backfacing polygon
removal is not as general as z-buffering, but z-buffering may be slower than
backface removal on some systems.

8-2 Hidden-Surface Removal

8.1 z-buffering

The z-buffer is a bitplane, associated with a framebuffer, that stores the distance
from the near clipping plane to each pixel in the window. In z-buffer mode, the
z coordinate (distance to the eye) of the incoming (next to be drawn) pixel is
compared to the z coordinate of the geometry already drawn at that pixel. If
the incoming z value shows that the new geometry is closer to the eye than the
existing geometry, the values of the old pixel and of the old z value, which are
stored in the color framebuffer and the z-buffer, are replaced by the new ones.

The calculation is performed on a per-pixel basis, because it is possible to have
a set consisting of as few as three polygons, each of which is overlapped by
another in the set, as shown in Figure 8-1.

Figure 8-1 Overlapping Polygons

Not all systems support z-buffering. Use getgdesc(GD_BITS_NORM_ZBUFFER)

to return the z-buffer availability. The draw mode must be set to NORMALDRAW

to use z-buffering.

On most systems, the z-buffer is a hardware option. The size of the z-buffer can
be from 24 bits to 32 bits per screen pixel, depending on the system type. The
z value is signed on all systems except IRIS-4D/GT/GTX systems.

RealityEngine systems provide software support for selecting the size of the
hardware z-buffer to be 0 or 32 bits and support for multisampled z-buffering,
which is described in Chapter 15. See zbsize(3G) for more information.

The IRIS Indigo Entry system has a software z-buffer, with 32 bit z-buffer
memory allocated on a per window basis, rather than per screen.

Graphics Library Programming Guide 8-3

A 24-bit hardware z-buffer is optional on XS and XS24 systems and is standard
on Elan systems. On Elan systems, the low bit of the 24-bit z buffer is reserved
for fast clears, so that bit should be ignored when reading data back from the
z-buffer. Elan systems also allocate bits from the z-buffer for stencil operations,
so the resolution of the z-buffer is decreased when performing stenciling.

By default, z-buffering is turned off. To set up z-buffering, you enable z-buffer
mode, then write the maximum z value to every location in the z-buffer, using
the following commands:

zbuffer(TRUE);/* Enable z-buffering */
zclear(); /* Write the maximum z value to the z-buffer */

Before the system draws anything, it compares the z value of each incoming
pixel to the z-buffer value for that pixel. If the z value of the incoming pixel is
smaller than the value in the z-buffer, the pixel is colored, and that pixel’s
z-buffer value is set to the new z value. If the incoming pixel’s z value is greater
than the corresponding z-buffer value, the pixel is not drawn. The values in the
z-buffer thus always represent the distance to the item that is currently closest
to the eye.

The color value stored in the bitplanes represents the color of that item. Use
getzbuffer() to determine whether or not z-buffering is enabled; TRUE
means z-buffering is enabled and FALSE means it is not enabled.

Another consideration when using z-buffering is that the znear and zfar values
in the call to perspective() have a profound effect on the resolution of the
z-buffer's comparison facility. The z-buffer contains a finite number of integers,
each with a limited range of values that can be used to compare against the z
value of the incoming pixel. You can enhance the resolution of the z-buffer by
setting the near and far values as close together as possible. With a smaller
range of total values, more bits of precision are available. It is particularly
important to move the near clipping plane as far from the eye as possible.

8-4 Hidden-Surface Removal

This sample program, zbuffer.c, draws three rectangular boxes that tumble
through one another while the whole scene rotates. While the left mouse
button is up, the scene is drawn without z-buffering; when you press it,
z-buffering is enabled. If you run the program with an argument—by entering
zbuffer 5 , for example, there is a short delay before drawing each polygon.
The left mouse button still controls the z-buffering, but it is easier to see what
is happening because you can see each polygon drawn one at a time.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

float v[8][3] = {
{-1.0, -1.0, -1.0},
{-1.0, -1.0, 1.0},
{-1.0, 1.0, 1.0},
{-1.0, 1.0, -1.0},
{ 1.0, -1.0, -1.0},
{ 1.0, -1.0, 1.0},
{ 1.0, 1.0, 1.0},
{ 1.0, 1.0, -1.0},

};
unsigned int delaycount;

void delay()
{

if (delaycount)
sleep(delaycount);

}
void drawcube()
{

color(RED);
bgnpolygon();

v3f(v[0]);
v3f(v[1]);
v3f(v[2]);
v3f(v[3]);

endpolygon();
delay();
color(GREEN);
bgnpolygon();

v3f(v[0]);
v3f(v[4]);
v3f(v[5]);
v3f(v[1]);

endpolygon();

Graphics Library Programming Guide 8-5

delay();
color(BLUE);
bgnpolygon();

v3f(v[4]);
v3f(v[7]);
v3f(v[6]);
v3f(v[5]);

endpolygon();
delay();
color(YELLOW);
bgnpolygon();

v3f(v[3]);
v3f(v[7]);
v3f(v[6]);
v3f(v[2]);

endpolygon();
delay();
color(MAGENTA);
bgnpolygon();

v3f(v[5]);
v3f(v[1]);
v3f(v[2]);
v3f(v[6]);

endpolygon();
delay();
color(CYAN);
bgnpolygon();

v3f(v[0]);
v3f(v[4]);
v3f(v[7]);
v3f(v[3]);

endpolygon();
}

main(argc, argv)
int argc;
char *argv[];
{

Angle xrot, yrot, zrot;
short val;

xrot = yrot = zrot = 0;
if (argc == 1)

delaycount = 0;
else

delaycount = 1;

8-6 Hidden-Surface Removal

if (getgdesc(GD_BITS_NORM_ZBUFFER) == 0) {
fprintf(stderr, "Z-buffer not available on this machine\n");
return 1;

}
prefsize(400, 400);
winopen("zbuffer");
if (delaycount == 0)

doublebuffer();
gconfig();
mmode(MVIEWING);
ortho(-4.0, 4.0, -4.0, 4.0, -4.0, 4.0);
qdevice(ESCKEY);
qdevice(LEFTMOUSE); /* don’t want window manager to act on clicks */

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
pushmatrix();

rotate(xrot, ‘x’);
rotate(yrot, ‘y’);
rotate(zrot, ‘z’);
color(BLACK);
clear();
if (getbutton(LEFTMOUSE)) {

zbuffer(TRUE);
zclear();

}
else

zbuffer(FALSE);
pushmatrix();

scale(1.2, 1.2, 1.2);
translate(0.3, 0.2, 0.2);
drawcube();

popmatrix();
pushmatrix();

rotate(450 + zrot, ‘x’);
rotate(300 - xrot, ‘y’);
scale(1.8, 0.8, 0.8);
drawcube();

popmatrix();
pushmatrix();

rotate(500 + yrot, ‘z’);
rotate(-zrot, ‘x’);
translate(-0.3, -0.2, 0.6);
scale(1.4, 1.2, 0.7);
drawcube();

popmatrix();
popmatrix();

Graphics Library Programming Guide 8-7

if (delaycount == 0)
swapbuffers();

xrot += 11;
yrot += 15;
if (xrot + yrot > 3500)

zrot += 23;
if (xrot > 3600)

xrot -= 3600;
if (yrot > 3600)

yrot -= 3600;
if (zrot > 3600)

zrot -= 3600;
}
gexit();
return 0;

}

The part of the program that turns on the z-buffering is the two subroutines:

zbuffer(TRUE);
zclear();

First, zbuffer(TRUE) enables z-buffer comparisons to be made before each
write, then zclear() sets all the z values to the largest possible value for pixels
in the viewport. In this example, zbuffer(TRUE) is called for every frame;
however, this is normally not necessary because a typical program turns it on
at the beginning. The code is written as it is because the left mouse button can
come up at any time, in which case z-buffering is turned off.

8.1.1 Controlling z Values

Just as viewport() controls the scaling of x and y coordinates, there is a
subroutine, lsetdepth() , that controls the scaling of z coordinates.
lsetdepth() takes two arguments, corresponding to the near and far clipping
planes. By default, near is set to the minimum value that can be stored in the
z-buffer and far is set to the maximum value.

These values are system-dependent. Use getgdesc(GD_ZMIN) to return the
minimum z value and getgdesc(GD_ZMAX) to return the maximum z value, so
that you can set near and far to their minimum and maximum values,
regardless of what type of system is used, by calling:

lsetdepth(getgdesc(GD_ZMIN), getgdesc(GD_ZMAX));

8-8 Hidden-Surface Removal

Table 8-1 lists the minimum and maximum z values for different models.
These are signed values on all systems except IRIS-4D/GT/GTX systems.

Note: z-buffer hardware is optional on the XS, XS24, and Elan. These
systems do not provide a software z-buffer in lieu of the hardware
z-buffer.

8.1.2 Clearing the z-buffer and the Bitplanes Simultaneously

A common code sequence in programs that do z-buffering is:

color(0);
clear();
zclear();

This code clears the color bitplanes to zero, then clears the z-buffer bitplanes to
the maximum value. Unfortunately, it takes a relatively long time, because
clear() touches each pixel first, then zclear() touches each pixel again. In
recent hardware implementations, the hardware can, in certain cases,
simultaneously clear the color planes and the z-buffer planes. Use czclear()

to do simultaneous clearing of color and z-buffer:

czclear(long color, long zval)

The circumstances and results of using czclear() are different on different
systems. See the czclear(3G) man page for details. czclear() clears the
bitplanes to color and the z-buffer to zval simultaneously.

System Model Minimum Value Maximum Value

IRIS-4D/B or G 0x4000 0x3FFF

IRIS-4D/GT or GTX 0 0x7FFFFF

Personal IRIS,
IRIS-4D/VGX, VGXT,
SkyWriter, XS, XS24, Elan

0x800000 0x7FFFFF

IRIS Indigo, RealityEngine 0x80000000 0x7FFFFFFF

Table 8-1 Maximum and Minimum z-buffer Values

Graphics Library Programming Guide 8-9

Using czclear on IRIS-4D/VGX, VGXT and SkyWriter Systems

IRIS-4D/VGX, VGXT, SkyWriter, and RealityEngine always clear the banks of
color and z bitplanes sequentially, regardless of the values of cval and zval.

Using czclear on IRIS-4D/GT/GTX Systems

On IRIS-4D/GT/GTX systems, czclear() simultaneously clears the z-buffer
and bitplanes if circumstances allow it. These systems can perform a
simultaneous clear under the following conditions:

• In RGB mode, the 24 least-significant bits of color (red, green, and
blue) must be identical to the 24 least-significant bits of zval. In the
case of RGB mode, it is common to set the background color to black
(all zeros). This makes it necessary for you to reverse the orientation
of the z-buffer near/far clipping values.The following two function
calls reverse the z-buffer orientation, so that the maximum distance to
which all z values are initially cleared is 0 instead of ZMAX:

lsetdepth(getgdesc(GD_ZMAX), 0x0);
zfunction(ZF_GEQUAL);

At this point, all that has changed is that the system has positioned
the viewer so that all z compares take place with near mapped to a
large number and far mapped to 0.

• In color map mode, the 12 least-significant bits of color must be identical
to the 12 least-significant bits of zval. Because the color parameter is an
index into the color map index, only the lowest 12 bits are significant.

Using czclear on Personal IRIS, XS, XS24, and Elan Systems

On the Personal IRIS, you can speed up czclear() by as much as a factor of
four for common values of zval if you call zfunction() with it, so that one of
the conditions in Table 8-2 is met. See Section 8.2.2, “Alternative Comparisons
and z-buffer Writemasks,”for information about zfunction() .

zval zfunction

getgdesc(GD_ZMIN) ZF_GREATER or ZF_GEQUAL

getgdesc(GD_ZMAX) ZF_LESS or ZF_LEQUAL

Table 8-2 Values of zfunction() for Personal IRIS czclear()

8-10 Hidden-Surface Removal

8.2 Using z-buffer Features for Special Applications

This section discusses special features associated with z-buffering. Most of
them are rarely used, so this section can be skipped on first reading. Topics
include writing directly into the z-buffer, using alternate depth comparison
functions and sources, and using writemasks for the z-buffer.

8.2.1 Drawing into the z-buffer

There are certain applications where it is useful to write values directly into the
z-buffer. zclear() is actually a special case of writing into the z-buffer, where
the values in the z-buffer are all set to a particular depth value.

In a flight simulator, for example, suppose that the view on the screen includes
an instrument panel surrounding the plane’s windshield. If the instrument
panel does not change from frame to frame, there is no reason to redraw it, so
it might be nice to clear only the portion of the screen and z-buffer
corresponding to the view out the plane’s windshield and redraw only that
portion of the window for each frame.

To do this, set the current “color” to the value returned by the call to
getgdesc(GD_ZMAX) on your system. Use zdraw() to write this value into the
z-buffer, then draw the polygon(s) representing the windshield. When the
outside view is drawn, it is always masked by the plane’s windshield frame
and instrument panel (which is closer to the eye). Thus an extremely complex
instrument panel is possible, because it needs to be drawn only once.

When zdraw() is TRUE, zbuffer() must be set to FALSE, otherwise both try
to alter the z-buffer contents simultaneously. In color map mode, the value
written to the z-buffer by zdraw() is the index of the color specified. For
example, color(2) writes 2s to the z-buffer.

zdraw() is similar to frontbuffer() and backbuffer() in that it permits
writing into the z-buffer bank. Normally, if you are writing into the z-buffer,
you do not want to write into the front buffer or back buffer at the same time.
Usually, drawing into the z-buffer should be bracketed by subroutines that
first set backbuffer(FALSE) and then backbuffer(TRUE) , assuming that the
program is in double buffer mode. In single buffer mode, frontbuffer()

normally has no effect. However, if you call frontbuffer(FALSE) , a flag is set
so that when zdraw() is TRUE, the front buffer (which is the only buffer in

Graphics Library Programming Guide 8-11

single buffer mode) is not written. If zdraw() is FALSE, frontbuffer(FALSE)

has no effect.

On Elan, XS, and XS24 systems, do not use zdraw() when drawing into a
clipped window, or when using read/modify/write operations such as
antialiasing or logicop() .

This sample program, zdraw.c, illustrates the zdraw() masking technique. It
draws a spinning cube, seen through square cut-outs in a green wall.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>
#define RGB_BLACK 0x000000
#define RGB_GREEN 0x00ff00
#define HOLESIZE 32
#define HOLESEP (HOLESIZE/2)

float v[8][3] = {
{-1.0, -1.0, -1.0},
{-1.0, -1.0, 1.0},
{-1.0, 1.0, 1.0},
{-1.0, 1.0, -1.0},
{ 1.0, -1.0, -1.0},
{ 1.0, -1.0, 1.0},
{ 1.0, 1.0, 1.0},
{ 1.0, 1.0, -1.0},

};

int face[6][4] = {
{0, 1, 2, 3},
{3, 2, 6, 7},
{7, 6, 5, 4},
{4, 5, 1, 0},
{1, 2, 6, 5},
{0, 4, 7, 3},

};

unsigned long facecolor[6] = {
0xff0000, /* blue */
0x0000ff, /* red */
0x00ffff, /* yellow */
0xffff00, /* cyan */
0xff00ff, /* magenta */
0xffffff, /* white */

};

8-12 Hidden-Surface Removal

void drawcube()
{

int i;
for (i = 0; i < 6; i++) {

cpack(facecolor[i]);
bgnpolygon();

v3f(v[face[i][0]]);
v3f(v[face[i][1]]);
v3f(v[face[i][2]]);
v3f(v[face[i][3]]);

endpolygon();
}

}
main(argc, argv)
int argc;
char *argv[];
{

int i, j;
Angle xang, yang;
short val;
Boolean use_geom;
unsigned long holez[HOLESIZE*HOLESIZE];

if (getgdesc(GD_BITS_NORM_DBL_RED) == 0) {
fprintf(stderr, "Double buffered RGB not available on this machine\n");

return 1;
}
if (getgdesc(GD_BITS_NORM_ZBUFFER) == 0) {

fprintf(stderr, "Z-buffer not available on this machine\n");
return 1;

}
if (getgdesc(GD_ZDRAW_GEOM) == 0 && getgdesc(GD_ZDRAW_PIXELS) == 0) {

fprintf(stderr, "Z-buffer drawing not available on this machine\n");
return 1;

}
prefsize(400, 400);
winopen("zdraw");
RGBmode();
doublebuffer();
gconfig();
qdevice(ESCKEY);
mmode(MVIEWING);
ortho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
zbuffer(TRUE);
zclear();
use_geom = getgdesc(GD_ZDRAW_GEOM) == 1;

Graphics Library Programming Guide 8-13

if (!use_geom) {
holez[0] = getgdesc(GD_ZMAX);
for (i = 1; i < HOLESIZE*HOLESIZE; i++)

holez[i] = holez[0];
}

/* draw the green wall once */
cpack(RGB_GREEN);
frontbuffer(TRUE);
pushmatrix();

translate(0.0, 0.0, 1.9);
rectf(-2.00, -2.00, 2.00, 2.00);

popmatrix();
frontbuffer(FALSE);
xang = yang = 0;
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
/* create the holes in the green wall */
zbuffer(FALSE);
zdraw(TRUE);
backbuffer(FALSE);
if (use_geom) {

ortho2(-0.5, 399.5, -0.5, 399.5);
cpack(getgdesc(GD_ZMAX));

}
for (i = 100; i <= 300; i += 50) {

for (j = 100; j <= 300; j += 50) {
if (use_geom)

rectf(i, j, i + HOLESIZE - 1, j + HOLESIZE - 1);
else

lrectwrite(i, j, i +HOLESIZE - 1, j + HOLESIZE - 1, holez);
}

}
if (use_geom)

ortho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
zdraw(FALSE);
backbuffer(TRUE);
zbuffer(TRUE);

/* z-buffered clear to background color and depth */
cpack(RGB_BLACK);
pushmatrix();

translate(0.0, 0.0, -1.9);
rectf(-2.00, -2.00, 2.00, 2.00);

popmatrix();

8-14 Hidden-Surface Removal

/* draw the outside scene */
pushmatrix();

rotate(xang, 'x');
rotate(yang, 'y');
drawcube();

popmatrix();
swapbuffers();

/* update the rotation angles for next time through */
xang += 11;
yang += 17;
if (xang > 3600)

xang -= 3600;
if (yang > 3600)

yang -= 3600;
}
gexit();
return 0;

}

This program is written in RGB mode, because in color map mode, every color,
including the “color” drawn into the z-buffer, is masked to 12 bits.

The idea behind the program is that a green wall is drawn nearer the eye than
anything else. This sets all the z-buffer values so they record data near the eye.
In the main loop, 25 holes are drilled into the wall by setting the z-buffer values
in the squares to indicate that the surface is far away. Then a black background
is drawn farther from the eye than any part of the cube. Finally, the cube is
drawn, and it is visible only through the holes.

8.2.2 Alternative Comparisons and z-buffer Writemasks

In the default z-buffer mode, the z coordinate of the incoming pixel is
compared to the z coordinate of the geometry already drawn at that pixel. If
the incoming z value shows that the new geometry is closer to the eye than the
old one, the values of the old pixel and of the old z value are replaced by the
new ones. Thus the new value is compared to the old, and if it is less than the
old, the old quantities are replaced.

It is possible to change the comparison function from “less-than” to another
type of decision, to achieve a different effect. To change the comparison
function, use zfunction() .

Graphics Library Programming Guide 8-15

The z comparison functions are:

ZF_NEVER Never overwrite the source pixel value.

ZF_LESS Overwrite the source pixel value if the z value of the source
pixel is less than the z value of the destination pixel.

ZF_EQUAL Overwrite the source pixel value if the z value of the source
pixel is equal to the z value of the destination pixel.

ZF_LEQUAL Overwrite the source pixel value if the z value of the source
pixel is less than or equal to the z value of the destination pixel
(default).

ZF_GREATER Overwrite the source pixel value if the z value of the source
pixel is greater than the z value of the destination pixel.

ZF_NOTEQUAL Overwrite the source pixel value if the z value of the source
pixel is not equal to the z value of the destination pixel.

ZF_GEQUAL Overwrite the source pixel value if the z value of the source
pixel is greater than or equal to the z value of the destination
pixel.

ZF_ALWAYS Always overwrite the source pixel value regardless of value of
the destination pixel.

You can also control writing into the z-buffer with zwritemask() . This might
be useful for using a very complicated background into which a few items are
to be drawn and moved quickly. Setting zwritemask() to zero locks the
background information in, and prevents its modification; the new items are
drawn or not depending on the depth comparison.

8-16 Hidden-Surface Removal

8.3 Stenciling

IRIS-4D/VGX, SkyWriter, and RealityEngine systems support an additional
z-buffer-like test that uses a different algorithm from the one described
previously in this chapter. This test uses the flexible frame buffer configuration
on these systems to allocate stencil planes.

Stenciling, like z-buffering, enables and disables drawing on a per-pixel basis.
You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, like decals, outlining, and constructive solid geometry
rendering.

The stencil() statement controls testing of stencil bitplanes before the
system writes to the frame buffer:

void stencil(long enable, unsigned long ref, long func,
unsigned long mask, long fail, long pass, long zpass);

The first argument to stencil() enables or disables stenciling. To enable
stenciling, call stencil() with enable set to TRUE. If you call stencil() with
enable set to FALSE, the following parameters are ignored and stencil testing is
not performed.

When stenciling is enabled, the system tests the defined stencil bitplanes for
each pixel against a programmed reference value before writing to that pixel.
Based on the contents of the stencil bitplanes and the programmed tests
defined by the stencil() statement, the system then conditionally modifies
the pixel’s contents (both for the color bitplanes and for the z-buffer) by a
programmed value, as defined in the call to stencil() .

Once you enable stenciling, the system tests the color and z-buffer bitplanes for
each pixel. The results of the tests are determined by a reference value, passed
through the argument ref, the value in the stencil bitplanes, and a stencil
function that operates on them both.

Graphics Library Programming Guide 8-17

This function, passed as the argument func, can be one of the following:

SF_NEVER Do not perform the specified stencil update (passed as the
value of fail, pass, and zpass) regardless of the results of the
comparison.

SF_LESS Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is less than the value in the stencil
planes.

SF_EQUAL Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is equal to the value in the stencil
planes.

SF_LEQUAL Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is less than or equal to the value in the
stencil planes.

SF_GREATER Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is greater than the value in the stencil
planes.

SF_NOTEQUAL Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is not equal to the value in the stencil
planes.

SF_GEQUAL Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is greater than or equal to the value
in the stencil planes.

SF_ALWAYS Perform the specified stencil update (specified as the value of
fail, pass, and zpass) regardless of the results of the comparison.

The mask argument to stencil defines which stencil bitplanes are significant
during the comparison operation. Use this argument to ignore individual
planes you do not want to use in the stencil test.

When stencil performs its test as defined by func, it returns one of three
possible values:

fail The stencil test (defined in the call to stencil) fails.

pass The stencil test passes, but the z-buffer test fails.

zpass The stencil test passes, and the z-buffer test passes.

These three possible values are reflected as the arguments fail, pass, and zpass
(the last three arguments passed to stencil). If the z-buffer is not enabled, only

8-18 Hidden-Surface Removal

fail and pass are considered. These arguments define the operation to be
performed based on the results of the stencil test. The system performs one of
the functions defined by the value of fail, pass, and zpass passed to stencil() .

ST_KEEP Keep the value currently in the bitplanes (no change).

ST_ZERO Replace the contents of the pixel with zeros.

ST_REPLACE Replace the contents of the pixel with the value of ref.

ST_INCR Add 1 to the contents of the pixel. This is clamped to the
maximum value of the pixel at that location.

ST_DECR Subtract 1 from the contents of the pixel. This is clamped to 0.

ST_INVERT Invert all bits in that pixel.

Based on the results of the test, the system performs the function that applies
to the conditions.

A sample stencil command follows, with a description of its results.

stencil(TRUE, 220, SF_EQUAL, 0xff, ST_REPLACE, ST_KEEP, ST_KEEP);

In this example, the system compares 220 against the contents of the stencil
planes. Because mask is 0xff, all eight planes are valid in this comparison. The
test is to see whether the stencil planes are exactly equal to ref, which is 220. If
the test fails— that is, if the contents of the stencil planes do not equal ref— the
system replaces them with the value of ref (220). Both pass and zpass are set to
ST_KEEP, which means that there is no change to the pixels or to the z-buffer if
the test passes. If the z-buffer is enabled, color and depth are drawn only in the
zpass case (meaning that both color and z-buffer planes pass the test). If the
z-buffer is not enabled, zpass is ignored and only the pass function is
performed.

stensize

Use stensize() to define the bitplanes you wish to use as the stencil:

void stensize(long planes)

You can define up to 8 stencil planes. Systems without the optional alpha
bitplanes allocate the stencil bitplanes from the least-significant planes of the
z-buffer. Use getgdesc() to determine whether your system has alpha
bitplanes. Once you have allocated a number of bitplanes for use as a stencil,

Graphics Library Programming Guide 8-19

these planes can be used to store information that is later used by the
stencil() statement.

sclear

Use sclear() to set the value of every pixel in the stencil buffer:

void sclear(unsigned long sval)

Pass the desired value to sclear() as sval. The clearing operation is limited by
the current viewport() and scrmask() statements in effect, and is masked by
the current swritemask() .

swritemask

Use swritemask() to specify which of the stencil bitplanes can be modified by
sclear() and normal stencil operation:

void swritemask(unsigned long mask)

The next sample program, stencil.c, uses stenciling to render the outline of an
object in an arbitrary image. Because the bitmap of an image takes a lot of
space, the code mimics drawing the image by actually drawing polygons.

The image is a basic checkerboard on black background. It “jitters” four times
and increments the stencil value each time a pixel is hit. This leaves the
outlines with stencil values of 0x1, 0x2, and 0x3, while pixels with stencil
values of 0x0 and 0x4 are completely outside and inside the object,
respectively. The last step is to render a polygon over the entire region, turning
on only those pixels that are on the outline.

#include <stdio.h>
#include <gl/gl.h>

floatrect0[4][2] = {
{-0.5, -0.5},
{ 0.5, -0.5},
{ 0.5, 0.5},
{-0.5, 0.5},
};

8-20 Hidden-Surface Removal

main()
{

if (getgdesc(GD_BITS_STENCIL) == 0) {
fprintf(stderr, "stencil not available on this machine\n");
return 1;

}

prefsize(400, 400);
winopen("stencil");
RGBmode();
stensize(3);
gconfig();
mmode(MVIEWING);
ortho2(-10.0, 10.0, -10.0, 10.0);

cpack(0);
clear();
sclear(0);
wmpack(0);
stencil(1, 0x0, SF_ALWAYS, 0x7, ST_INCR, ST_INCR, ST_INCR);
viewport(0, 398, 0, 398);
checker();
viewport(1, 399, 0, 398);
checker();
viewport(1, 399, 1, 399);
checker();
viewport(0, 398, 1, 399);
checker();

stencil(1, 0x0, SF_NOTEQUAL, 0x3, ST_KEEP, ST_KEEP, ST_KEEP);
wmpack(0xffffffff);
scale(15.0, 15.0, 0.0);
bgnpolygon();

v2f(rect0[0]);
v2f(rect0[1]);
v2f(rect0[2]);
v2f(rect0[3]);

endpolygon();

sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 8-21

checker()
{

int i,j;

cpack(0x0000ff00);
pushmatrix();
translate(-5.0, -5.0, 0.0);
for (i=0; i<9; i++) {

for (j=0; j<9; j++) {
translate(1.0, 0.0, 0.0);
if ((î j) & 0x1) {/* checker board */

bgnpolygon();
v2f(rect0[0]);
v2f(rect0[1]);
v2f(rect0[2]);
v2f(rect0[3]);

endpolygon();
}

}
translate(-9.0, 1.0, 0.0);

}
popmatrix();

}

8.4 Eliminating Backfacing Polygons

In a scene composed entirely of opaque closed surfaces, backfacing polygons
(polygons whose face is pointing away from the viewer) are never visible.
Eliminating these invisible polygons from the scene has an obvious benefit—it
speeds drawing time by not drawing some of the polygons in the scene. This
is especially useful on systems such as the IRIS Indigo that have slower
z-buffer rates.

The idea is that if the polygons making up a surface are all oriented the same
way, and if the surface is closed, after transformation, all the polygons on the
front have one orientation and those on the back have the opposite orientation.
A special mode can be turned on to check whether the transformed polygons
are oriented clockwise or counterclockwise, and only those oriented
counterclockwise are drawn. The method is not sufficient for all hidden
surface removal if the object being drawn is not convex, or if there is more than
one object.

8-22 Hidden-Surface Removal

A backfacing polygon is defined as a polygon whose vertices appear in
clockwise order in screen space. When backfacing polygon removal is turned
on, only polygons whose vertices appear in counterclockwise order are
displayed, that is, polygons that point toward you. Therefore, the vertices of
all polygons should be specified such that they are drawn in counterclockwise
order when the front face of the polygon is visible (see Chapter 2 for examples).

Use backface() to initiate or terminate backfacing polygon removal. The
backface() utility is used to improve the performance of programs that
represent solid shapes as collections of polygons. The vertices of the polygons
on the side of the solid facing away from the viewer are in clockwise order and
are not drawn. backface() takes a single argument. TRUE enables backfacing
polygon elimination, and FALSE (the default) disables it.

Use frontface() to initiate or terminate frontfacing polygon removal. The
frontface() utility is used to display hidden surfaces (backfacing polygons).
In this case, the polygons on the side of the solid facing away from the viewer
are drawn; those facing the viewer are not drawn. frontface() takes a single
argument. TRUE enables frontfacing polygon elimination, and FALSE (the
default) disables it.

getbackface() returns the state of backfacing polygon removal. If backface
removal is on, the system draws only those polygons that face the viewer. If
backfacing polygon removal is enabled, 1 is returned; otherwise 0 is returned.

8.5 Alpha Comparison

On some systems, you can also use the alpha planes to determine whether to
draw pixels by comparing incoming alpha values to a reference constant
value. Not all systems support alpha operations. Use
getgdesc(GD_BITS_NORM_SNG_ALPHA) to test for the availability of alpha
planes.

Note: RealityEngine systems feature multisampled alpha comparison,
which is described in Chapter 15.

Use afunction() to compare the alpha values of source pixels to the value of
ref:

void afunction(long ref, long func)

Graphics Library Programming Guide 8-23

Depending on the value of func, afunction() determines whether a pixel is
completely transparent and draws the pixel conditional to its transparency.
afunction() assumes that alpha values are proportional to pixel coverage,
which is the case if you are using pointsmooth(), linesmooth() , or
polysmooth() .

The afunction() call makes the system draw pixels only if their alpha value
is not equal to 0. Pixels with 0 alpha are presumed to be completely
transparent—according to the conventions of pointsmooth() , linesmooth() ,
or polysmooth() .

The afunction() statement compares source alpha values against a reference
value that you include in the afunction() call. You also specify a comparison
function that determines the conditions under which afunction() permits
the system to draw pixels.

To make the system avoid drawing invisible pixels, call afunction() as
follows:

afunction(0, AF_NOTEQUAL);

To return the system to its default operation, call afunction() as follows:

afunction(0, AF_ALWAYS);

This call causes the alpha hardware to compare the values of all pixels in the
normal manner.

8-24 Hidden-Surface Removal

The following sample program, afunction.c, uses afunction() to define the
shape of a building and its windows. See Chapter 18 to learn how to use
texturing.

#include <stdio.h>
#include <gl/gl.h>

float mt0[3][3] = { /* mountain 0 coordinates */
{-15.0, -10.0, -15.0},
{ 10.0, -10.0, -15.0},
{ -5.0, 5.0, -15.0},

};

float mt1[3][3] = { /* mountain 1 coordinates */
{-10.0, -10.0, -17.0},
{ 15.0, -10.0, -17.0},
{ 6.0, 12.0, -17.0},

};

float bldg[4][3] = { /* building coordinates */
{-8.0, -10.0, -12.0},
{ 8.0, -10.0, -12.0},
{ 8.0, 10.0, -12.0},
{-8.0, 10.0, -12.0},

};

float tbldg[4][2] = { /* building texture coordinates */
{0.0, 1.0},
{1.0, 1.0},
{1.0, 0.0},
{0.0, 0.0},

};

/*
* Building texture and texture environment
*/

unsigned long bldgtex[8*4] = {
0xffffffff, 0xffff0000, 0x00000000, 0x00000000,
0xffffffff, 0xffff0000, 0x0000ffcf, 0xffcfffcf,
0xffff0000, 0xffff0000, 0x0000ffcf, 0x0000ffcf,
0xffffffff, 0xffffffff, 0xffffffcf, 0xffcfffcf,
0xffff0000, 0xffffffff, 0xffffffcf, 0x0000ffcf,
0xffffffff, 0xffffffff, 0xffffffcf, 0xffcfffcf,
0xffff0000, 0xffff0000, 0x0000ffcf, 0x0000ffcf,
0xffffffff, 0xffff0000, 0x0000ffcf, 0xffcfffcf,

};

Graphics Library Programming Guide 8-25

float txlist[] = {TX_MAGFILTER, TX_POINT, TX_NULL};
float tvlist[] = {TV_NULL};

main()
{

if (getgdesc(GD_BITS_NORM_ZBUFFER) == 0) {
fprintf(stderr, "Z-buffer not available on this machine\n");
return 1;

}
if (getgdesc(GD_TEXTURE) == 0) {

fprintf(stderr, "Texture mapping not available on this machine\n");
return 1;

}
if (getgdesc(GD_AFUNCTION) == 0) {

fprintf(stderr, "afunction not available on this machine\n");
return 1;

}

prefsize(400, 400);
winopen("afunction");
RGBmode();
gconfig();
mmode(MVIEWING);
ortho(-20.0, 20.0, -20.0, 20.0, 10.0, 20.0);
zbuffer(TRUE);
czclear(0, getgdesc(GD_ZMAX));

 /*
 * Draw 2 mountains
 */

cpack(0xff3f703f);
bgnpolygon();

v3f(mt0[0]);
v3f(mt0[1]);
v3f(mt0[2]);

endpolygon();

cpack(0xff234f00);
bgnpolygon();

v3f(mt1[0]);
v3f(mt1[1]);
v3f(mt1[2]);

endpolygon();

8-26 Hidden-Surface Removal

 /*
 * Draw the building
 */

texdef2d(1, 2, 8, 8, bldgtex, 0, txlist);
tevdef(1, 0, tvlist);
texbind(TX_TEXTURE_0, 1);
tevbind(TV_ENV0, 1);
afunction(0, AF_NOTEQUAL);
cpack(0xffffffff);
bgnpolygon();

t2f(tbldg[0]);
v3f(bldg[0]);
t2f(tbldg[1]);
v3f(bldg[1]);
t2f(tbldg[2]);
v3f(bldg[2]);
t2f(tbldg[3]);
v3f(bldg[3]);

endpolygon();
sleep(10);
gexit();
return 0;

}

